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Abstract

We consider mimetic finite difference approximations to second order elliptic problems on
non-matching multi-block grids. Mortar finite elements are employed on the non-matching
interfaces to impose weak continuity of the velocity. Optimal convergence and, for certain
cases, superconvergence is established for both the scalar variable and the velocity.

1 Introduction

In this work, we consider second order linear elliptic equations that in porous medium appli-
cations model single phase Darcy flow. We solve for pressamed velocityu satisfying

u=—-KVp in Q, (1.1)
V-u=5b in Q, (1.2)
p=g on o}, (1.3)

whereQ ¢ R%™ dim = 2 or 3, is a multi-block domain, an& is a symmetric, uniformly
positive definite tensor with>° (2) components representing the permeability divided by the
viscosity. The Dirichlet boundary conditions are considered merely for simplicity.

In this paper, we analyze the convergence of a mortar mimetic finite difference method
(mortar MFD) on quadrilateral and simplicial meshes. The MFD method employs discrete
operators that preserve certain critical properties of the original continuum differential oper-
ators, such as conservation laws, solution symmetries, and fundamental identities of vector
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calculus. Themimetictechnique has been successfully employed in a number of applica-
tions, including diffusion [19, 12, 15], continuum mechanics [14], and gas dynamics [8]. It
has been extended to locally refined meshes with hanging nodes [13], and unstructured three-
dimensional meshes comprised of hexahedrons, tetrahedrons, and any cell type that has three
faces intersecting at each vertex. In this paper, we employ mortar finite element techniques to
extend the MFD method to the case of non-matching multi-block mortar grids.

Mixed finite element (MFE) discretizations on quadrilateral meshes [20, 21, 2, 10] are
based on the Piola transformation [20, 7], which preserves continuity of the normal component
of the velocity across mesh edges, but results in the necessity to integrate rational functions
over quadrilaterals. This is further complicated in the case of a full or non-constant diffusion
tensor. The results in [5] provide an efficient numerical quadrature with a minimal number of
points, allowing for the extension of MFE methods to general polygons and polyhedra.

The mortar MFE method has been studied, for example, in [23, 1] (see also [4, 3, 22]
for seminal work on mortar couplings for Galerkin finite element discretizations). In these
methods, the domain is divided into nonoverlapping subdomain blocks, and each of these
subdomain blocks is discretized on a locally constructed mesh. As a result, the subdomain
grids do not match at interblock boundaries. To solve this problem, Lagrange multiplier pres-
sures are introduced at the interblock boundaries. This Lagrange multiplier space is called
the mortar finite element space. It was shown in [1] that the mortar MFE method is optimally
convergent, if the boundary space has one order higher approximability than the normal trace
of the velocity space.

A connection between the MFD method and the MFE method with Raviart-Thomas finite
elements was established in [5]. This was achieved by showing that the scalar product in the
velocity space proposed in [12] for MFD methods can be viewed as a quadrature rule in the
context of MFE methods. In [6], superconvergence for the normal velocities in MFD meth-
ods onh2-uniform quadrilateral meshes is established. In this paper, we exploit the relation
between the methods to show that the mortar MFD method exhibits optimal convergence. We
also establish superconvergence for the normal velocity?eaniform quadrilateral meshes
and for the pressure on simplicial and general quadrilateral meshes.

The outline of the paper is as follows. In Section 2, we describe the mortar MFD method
by extending the MFD method to the case of non-overlapping subdomain blocks. In Section 3,
the mortar MFE method is described, and in Section 4 it is related to the mortar MFD method.
In Sections 5 and 6, we give error estimates for the velocity and the pressure, respectively. We
conclude the paper with numerical experiments in Section 7.

2 Mortar mimetic finite difference method

We assume thd® can be decomposed into non-overlapping subdomain blagks

o=
1=1
Denote byl'; ; = 0€2; N 02, the interior block interfaces. Let

n
I=|JTiy, and T,=00nT =00\00.
ij=1
Let 7;,; be a conforming, shape-regular, quasi-uniform partitiof2gfl < ¢ < n [9],
allowing for 7 ; and7j, ; to be non-matching of; ;. We will consider simplicial elements
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in two and three dimensions as well as convex quadrilateral elements in two dimensions.
Let &, ; be the trace of mesfd, ; on the interfacd’; ; and let&, ; be the trace off;, ; on

99;. Let &, ; be another quasi-uniform partition 8% ;. We postulate tha, ; ; = & -

This partition will be used to impose interface matching conditions via mortar finite elements.
Finally, let

7= s

i=1

2.1 Subdomain discretization

We now consider one subdomdi; and introduce operatosandD by

V-u on €,

gp = —KVZ% Du = { —u-n on aQ“

wheren,; is the outer unit normal t6€2;. We shall refer ta@7 andD as the flux and extended
divergence operators, respectively. Let us introduce the scalar products

(u, v)x, = /K1u~vdx and P, Q)g, = /pqu+ %pqu,

in the spaceX; = L?(12;) of velocities and in the spae@; = H'((;) of pressures, respec-
tively. Using the above notations, the Gauss-Green formula is written as

(u7 gp)Xi - (p, Du)Qz

This expression states that the flux and extended divergence operators are adjoint to each other,
i.e. G = D*. In this section, we derive discrete operators that are adjoint to each other with
respect to certain scalar products in the discrete velocity and pressure spaces. For the sake of
simplicity, we omit subscripti' whenever this does not result in ambiguity.

Thefirst step in the mimetic finite difference (MFD) method is to specify discrete degrees
of freedom for the primary variables, pressure and velocity. The discrete pressure unknowns
are defined at the centers of the mesh elemerili pand at the centers of the boundary faces
of &,; (edges in 2D). The discrete velocities are defined at the midpoints of mesh faces of
Th; (edges in 2D) as normal components. In other words, a face-based unknown is a scalar
and represents the orthogonal projection of a velocity vector onto the unit vector normal to the
mesh face. The direction of the normal vectoaigriori fixed.

Thesecondstep in the MFD method is to equip the spaces of discrete pressures and veloc-
ities with scalar products. We denote the vector space of discrete press@és‘ﬂye scalar
product on this vector spacg/ is given by

5, dlge= > |Elppas+ Y Iflpsay, (2.1)

E€Th; f€&€h,;

where|E| denotes the volume (area in 2D) of eleméht f| denotes the area (lengh in 2D) of
facef, andpg, p; denote pressure components associated kviind f, respectively. Denote
by Qf’o the vector space of only cell-based unknowns. The scalar prodm@j”gris given by
the first sum in (2.1).



We denote the vector space of face-based velocitieX hyThe scalar product oX¢ is
given by
[ﬁv ﬁ]de = Z [67 17]Xfl7E7 (22)

EG'];"}L
where[i, 7] va 5 IS a scalar product over elemehtinvolving only normal velocity compo-
70

nents on element faces. Recall that a velocity vectdRff* can be recovered fromim
orthogonal projections on angim linearly independent vectors. For example, for a convex
non-degenerate cell iR3, any triplet of normal vectors to faces with a common point satisfy

the above requirement. These orthogonal projections are chosen as degrees of freedom. The
recovered velocities are used to define scalar product (2.2). We now consider two examples.

Vi

Figure 1. Recovered vectovs, v, and triangled, 75.

Let £ be a convex polygon withedges § = 3 for a triangle and = 4 for a quadrilateral).
As illustrated in Fig. 1, four recovered velocity vectors can be associated with the four vertices
of a quadrilateral. For example, velocity is recovered from its projections onto the normal
vectorsn; andn,. In the general case, we denotewir;) the velocity recovered at theth
vertexry of E, k = 1,...,s. In this paper, we shall consider two cell-based scalar products.
The first one is given by

@, fxop =~ Zm\K Yu(re) - v(ry), aE=|,§|Z\Tkr, (2.3)
k=1

where|T}| is the area of the triangle formed by two edges sharing:tite vertex. See, for
example, the shaded trianglé$ and 7y in Fig. 1. The second cell-based scalar product
requires only one evaluation of the tengorand is given by

. RN -
[ Axem = 5 Z | T Khu(ry) - v(ry) (2.4)

whereK g is the value of tensaK at the mass center @&f.
Note that both (2.2), (2.3) and (2.2), (2.4) are indeed scalar productpsincekK is a
uniformly bounded, symmetric and positive definite tensor, and

c1|E Z vf [0, deE < |E| Z vf (2.5)
fCOE fCOE

wherev; denotes the velocity component associated with faandc,, c; are positive con-
stants independent af



Let £ be a convex polyhedron with flat faces such that each verte¥ of shared by
exactly three faces. This allows us to uniquely recover velocity vectors at the vertices of
E. The scalar product over polyhedrénis given either by (2.3) or by (2.4), whef& is the
tetrahedron formed by the three edges sharingtievertex ofZ. Note that for a tetrahedron,

s =4 andagp = 4.

Thethird step in the MFD method is to derive a discrete approximation to the divergence

operator,DIV¢, which we shall refer to as th@ime operator. The divergence theorem gives

@IviD)| = 3wl (2.6)
fCOE

wherewu; is the normal velocity components on fageand | f| is the face area. Formula
(2.6) assumes an external orientation of normal vectors. If the vector normal té fasets
into the elementy s must be replaced by-u,. The extended discrete divergence operator,
D X¢ — @4, is given by

(DIV®@))| s VE€T,,
D = (2.7)
—uy Vf € Eni

In the fourth stepof the MFD method, a discrete flux operat@f that is adjoint to the
discrete extended divergence operafr with respect to scalar products (2.1) and (2.2) is
derived, i.e.

(DY, plga = i, G'plxe, Vi€ X{, VieQy. (2.8)
We will refer to (2.8) as the discrete Green’s formula. For the explicit formula of the operator
G?, see [5]. Now, the MFD method for subdomatn may be summarized as follows:
i = Gy,
DIViG = b, (2:9)
whereb; is in Qf. The entries ob; are integral averages of the right-hand sidever the
elements off}, ;.

2.2 Interface conditions

The system (2.9) is closed by imposing continuity and boundary conditions. Let us consider
the interfacel’; ; between subdomair@®; and(2;. Hereafter, we will use subscript’ ‘for

the vectors and operators satisfying equation (2.9). The continuity conditions that the true
solution satisfies are

pi|Fi,j = pj|1"m. and u;- ni|Fi,j =-u;- nj|1"i’j. (210)
In order to impose the above conditions discretely on hon-matching grids, we introduce the

intermediate vector spacbgf ;= A;l’i associated with the interface partitiép; ;. We will

make precise the definition (Aff] later in Section 4, where it will be related to a mortar space
in mixed finite element method.
Denote bngf ; the vector space of pressure unknowns associated with the faces of parti-

tion &, ; ;. The scalar product i@g{j is given by

Bigs Galga, = D f|pigs tigs
fC&h,ij
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wherep; ; ; (resp.,q; ;,r) is the component of vectgr; ; (resp.,q; ;) associated with facg.
Similarly, we define the vector spaé,@gj of velocity unknowns associated with the faces

of partition&;, ; ;. We chooseX(; to be isometric ta)¢ ;, i.e.
(i3, Viglxa, = [Wijs Tiglge -

Finally, let R; ; : Ag{j — Qg{j be a linear projection operator exact for constant vectors.
We will make precise the definition a®; ; later in Section 4, where it will be related to the
orthogonal projector from the mortar finite element space to the space of piecewise constant
functions.

The continuity conditions are derived from two requirements. First, we require the local
mass conservation across each facggf;, i.e.

(@ Rigilxa = —[djq, Ryafilxa, Vi € AL (2.11)

Let F; ; be the diagonal matrix with entries that are the areas of facgs;gf Itis not difficult
to see that the mass conservation results in the following interface condition:

R}, Fyjtis; = —R]; Fjiij. (2.12)

Second, we require that the discrete Green’s formula (2.8) holéls orf2;. It is not difficult

to see that this will be true if the sum of the two discrete Green’s formulas leaves only outer
boundary contributions. According to (2.1), the boundary terms associated with the common
interface will cancel if

iy iglga, = —[Phe Filge, -
The sufficient condition for that is as follows:

INEAL  piy=Righ and pi; = R\ (2.13)

In a very special case of non-matching meshes, the locally refined meshes, veatoibe
eliminated from (2.13). In Section 7, we derive simple formulas for the interface conditions
on locally refined meshes. In a more general cass considered as an additional unknown.

The system of equations (2.9) is closed by imposing continuity conditions (2.12) and
(2.13) and the boundary conditions

pr=gr VfCOQ, (2.14)

wheregy is the integral average gfover facef.

3 Mortar mixed finite element method

In this section we briefly recall the mortar mixed finite element method introduced in [23, 1],
which will be later related to the mortar MFD method from the previous section. We shall
follow the standard notations for norms, seminorm and scalar products. A weak solution of
(1.1)—(1.3) is a pain € H(div;Q), p € L?(2), such that

(K™ u,v) = (p,V-v) — (g,v-n)aq, v € H(div; ), (3.1)
(V-u,w) = (b,w), w e L*(Q). (3.2)



It is well known (see, e.g., [7, 18]) that (3.1)—(3.2) has an unique solution. The multidomain
formulation of (3.1)—(3.1) is based on the spaces

Vi = H(div; ), V=V,
=1

Wi = L2(Q), W =W =L*9Q).
=1

If the solution(u, p) of (3.1)—(3.2) belongs téf (div; ) x H'(Q), itis easy to see [7, pp. 91—
92] that it satisfies, fot < i < n,

(K~"u,v)a, = (p. V- V)o, — (p,v-mi)r, — (9. V- Di)ognr, vevs, (3.3)
(V-u,w)q, = (byw)gq,, w e W;. (3.4)

The mortar mixed finite element method discretizes (3.3)—(3.4), coupled with a mortar-based
discretization of the continuity conditions (2.10). Next, we present the definition of the mixed
finite element spaces. We restrict ourself to the two-dimensional elements: quadrilaterals and
triangles. The finite element spaces for a tetrahedral element are constructed similar to the
finite element spaces for a triangular element.

For any elemenf € 7,, there exists a bijection mappirg;: £ — E, whereF is the
reference element. For example, in the case of convex quadrilatétagsthe unit square
with verticest; = (0, 0)T, £ = (1, 0)T, 5 = (1, )T andty = (0, 1)T. Denote by
r; = (xi, yi)', 4 = 1,2, 3,4, the four corresponding vertices of eleméhais shown in Fig. 2.
Then, F is the bilinear mapping given by

Fp(t)=r1(1—-2)1—9)+roz(l —9) +r3ig+rs(l—2)g.
Note that the Jacobi matri®F'z and its Jacobiady are linear functions of andy. Indeed,
straightforward computations yield
DFp =[1—-9)ro1+yraa, (1 —2)ra +Irse],
and
Jg = 2|Ti24] + 2(|T123| — |T124])% + 2(|T134] — |T124])9, (3.5)

wherer;; = r; — r; and|T;;;| is the area of the triangle with vertices r; andr;,. SinceF
is convex, the Jacobiary is uniformly positive, i.e.Jg(Z,y) > 0. We denote the inverse
mapping byF; ' and its Jacobian by ;1.

In the case of trianglesk is the reference right triangle with vertices = (0, 0)7,
2 = (1, 0)7, andi3z = (0, 1)7. The linear mapping for triangles has the form

Fp(t) =ri(1 -2 — ) + rad + ry, (3.6)
with respective Jacobi matrix and Jacobian
DFE = [I‘Ql,l‘gl]T and JE = 2’T123’. (37)

Note that in this case the mapping is affine and the Jacobi matrix and its Jacobian are constants.
We denote the lowest order Raviart-Thomas-Nedelec (RTN) mixed finite element spaces
[20, 17, 16] by
Vhﬂ' X Wh,i CV; xW;
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Figure 2: Bilinear mapping and orientation of normal vectors.

These spaces are initially defined on the reference element. For examplés the unit
square, the spaces are

V(E)=Po(E)x Py (FE) and W(E)= Py(FE),

where P, o (or Py 1) denotes the space of polynomials linear in th¢or y) variable and
constant in the other variable, ayy denotes the space of constant functions. In the case
whenF is the unit triangle, the spaces on this reference element are

V(E) = Py(E) x Py(E) + Py(E)x  and  W(E) = Py(E).

The velocity space on any eleméiitis defined via the Piola transformation

1 . ) )
7 DFe: (La(E)™™ — (La(E)™™,  VE €T,

The RTN, spaces o017}, ; are given by

Vi = {veVy vlg=Jg'DFgvoFgl, veV(E) VEc€T,,}, 3:8)
Wii = {weW;: wlp=1woFg', e W(E) VEeT,,} '

The following two properties of the Piola transformation will be useful in the analysis. For
anyv € V(E) and the relates¢ = J;' DFpv o F;*, we have

/v.vdx:/vvdfc and /v.ndeZ/v.ﬁfdé, (3.9)
E E f f

wheref is any face off’ andn; andﬁf are the unit normal vectors jr,bandf, respectively.

The quasi-uniform partitiory, ; ; of T; ; introduced above is referred to as the mortar
interface mesh. Denote hy;,; ; C L*(I'; ;) the mortar space of; ;, containing either the
continuous or discontinuous piecewise polynomials of degree odg pn Let

n n
V=@ Vii» Wa=PWiir M= B Anij-
i=1 i=1 1<i<j<n

Although normal components of vectorsWy, are continuous between elements within each
block2;, there is no such restriction acrdssThe spacé\;, is called the mortar finite element
space orl". In the following we treat any function € A, as extended by zero a¥f). An
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additional assumption on the spatg and, hence&y,; ; will be made below in (4.7) and
(5.13). We remark thaﬂ;‘jhm need not be conforming if a discontinuous space is used.

In the mortar mixed finite element approximation of (3.1)—(3.2), we sgek V,,, py, €
Wh, An € Ay, such that, fol < i < n,

(K 'y, V), = (Pr, V- V), — (An, Vony)r, — (g, V- ni)oonr, V€ Vi, (3.10)
(V- up, w)g, = (byw)a,, w e Wy, (3.11)

S " (uy -ny, @), =0, peh, (3.12)
=1

Remark 3.1 The above method imposes continuity of pressure by approximating the pressure
on the interfaces by a single-valued mortar functign while continuity of normal flux is
imposed weakly i43.12)with respect to Lagrange multipliers in the mortar space.

4 Relating mortar MFD and mortar MFE methods

The basic tool for the error analysis of the mortar MFD method is based on establishing
connections with the mortar mixed finite element (MFE) method (3.10)—(3.12). We begin by
establishing an isomorphism between finite difference and finite element spaces.

The degrees of freedom &f;, ; are associated with mesh faces. Therefore, the sgace
is isomorphic to the vector spacé?. Similarly, the degrees of freedom of the finite element
spacelV}, ; are associated with the cell centers and the space is isometric to the vector space
Qf’o (see [5]). By the same arguments, the vector sﬁég&f:]eis isometric to the finite element
spaceVy,; - ni|ri,]-'

Finally, we chose&d to be isomorphic to finite element spadg; ;. In particular, the
degrees of freedom ofd are the values of the pressure at the vertices of parmqg In
the case of dlscontlnuous mortars, each vertex may be associated with multiple degrees of
freedom. The projectaR; ; is implicitly given by

(R jilij (Ti,j]Qtjj = (Wh,ij»>Qh,ij )T Viii; € AL, Vi € QY (4.1)

wherey,; j € Ap;andg;; € Vi nZ\F are the finite element counterparts of vectors

fi;,; andg; ;, respectively.
For each interfacg; ;, we define ad.2-orthogonal projection operat®ty, ; ; : LA(T; ) —
Vi n2|F such that, for any € L*(T; ;),

(¢ — Rh,ij¢, v -mi)r, ; =0 Vv € Vi,

The operatofRy, ;; : L*(I; ;) — Vp; - njlr, ; is defined similarly. LeRy,; : L?(99;) —
V5. - nilan, be such that, for any € L%(99; )

Rh,l¢|rl,] = Rh,i,j¢’

Note that the projection operat®;, ; ; restricted toA; ; ; acts from the space of piecewise
linear functions org}, ; ; to the space of piecewise constant function€pp;. Using (4.1), it

is clear that the projectak; ; defined on the vector spam{j is the matrix representation of
Rhij: Mnjij — Vi nir, -



The next step is to reformulate the MFD method in a way that is more suitable for our
analysis. Multiplying the first equation in (2.9) iy € X¢, the second one hy; € Qf’o, and
using the discrete Green'’s formula (2.8), we get

(@i, ) xea — i DI Blga = 0, v € X7,
S d - - - 40 4.2)
@i DIV di] gao = [bi, @ geo, G € Q5.

Recall that the above equations are coupled with the continuity conditions (2.12), (2.13) and
the boundary conditions (2.14). Using the isomorphism between the finite element space
Vy,.i x Wy, ; and the vector spacﬁid X Qf’o, we define finite element functions ;, by, ; and

uy,; corresponding to vectorg, b; andii;, respectively. Then,

G;, DIV Uil gao = (qni, V - Uni)a;-
The definition ofb; implies that
[b:, @il gao = (bnis qni)e; = (b; qni)o;-

We decompose vectgi; asp; = (57, p;), wherep? € Qf’o, and denote the finite element
counterparts oﬁio andu; € Xﬁ by py; andvy, ;, respectively. Let\, € Aj; be the mortar
finite element counterpart of from the pressure continuity condition (2.13). The Dirichlet
boundary conditions specify the components of vegfoon d2. Using (2.7), (2.13), (2.14),
and the definition of the projectorg; ; andRR;, ;, we get

[9;, D Uilga = (Phir V- Vii)a; = (RiiAn, Vai - 1)1, = (Riigs Vai - Di)oor 4.3)
= (Phi> V- Vi), — (Mny Va1, — (9, Vhi - 0i)g0,\T-

Next, lettingpy,;; € Ap,; be the finite element counterpart of vecfgr;, the continuity
condition (2.11) becomes

<Nh,i,j7 Up,i ni>Fi,j = —<Nh,i,j7 Up,j - nJ')Fj,z"
Finally, by introducing the quadrature rule
-1 N
(K™ i, Vai)no, = (U, Uil xa,

we can reformulate the mortar MFD problem (2.9), (2.13), (2.12) , (2.14) as the following
problem. We seeki;, € Vy,, pr, € Wi, A\, € Ay, such that, fod < i < n,

(K™ ', vV)ng, = 00, V- V), — (A, veomi)r, — (9, v midagar, Vv E Vi, (4.4)
(V-up,w), = (byw)a,, w € Wy, (4.5)

n

> (g, p)r, =0, pe M, (4.6)
=1

The next lemma shows that the problem is well posed.

Lemma 4.1 Assume that for ang € Ay,
Rpi¢ =0, 1 <7 <n, implies thatp = 0. 4.7)

Then there exists a unique solution(4f4)—(4.6)
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Proof. The proof closely follows the proof of Lemma 2.1 in [1] with only a slight modi-
fication. Since (4.4)—(4.6) is a square system, it is sufficient to show uniqueneds=L@t
g = 0. Settingv = uy, w = py, andu = — A, adding (4.4)—(4.6), and summing over
1 <i < n, implies that

n

Z(K_luh, up)n,0; = 0.

=1
The coercivity result from [5]

n

Z(K‘luh,uh)h,m > Cllupl§.0 (4.8)
i1

implies thatu;, = 0. The argument for proving tha}, = A;, = 0 is the same as in the proof
of Lemma 2.1 in [1]. O

Remark 4.1 Above, as well as in several other places in this paper, we employ results ob-
tained in [1]. Although [1] only treats affine elements, it is easy to check that the arguments
used to obtain the results referred to here also apply in the case of general quadrilateral
elements.

We end this section by remarking that (4.8) and the continuity of scalar produdiso,
imply that these scalar products give rise to a ndrmi|;, in Vy,, which is equivalent to the
L2-norm. In other words, there exist positive constafitandc, independent ok, such that

cillvljo < [Vl < e2llvioe Vv E V. (4.9)

5 Velocity error estimates

We first recall several projection operators that will be used in the analysis. Of¢e#uére
exists a projectiofl; from (H'(£2;))%™ onto'V}, ; satisfying

(V- (ILiq — q),w), =0, we Wy;. (5.1)

LetIT : @) ,(H())¥™ — V, be defined byIlq)|o, = II;(ql,). The operatoil is
defined locally on each elemehtby

Mg = 14,
wherell : (Hl(E)) o V(E) is the reference element projection operator satisfying
/f(ﬂq—qyﬁ:o Vf c OE.
Let P}, be theL?(T") projection onta)\,, satisfying for any) € L?(T),

(Y =Prb,pr =0 Vp € Ay,
For anyp € L?(Q), let Q,¢ € W, be itsL?(Q) projection satisfying

(p = Qnp,w)a=0  Yw € W,
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We state several well-known approximation properties of these projection operators:

[ = Prtllor,; < Clldllrr, ;2" 0<r<2, (5.2)
e = Qnello < Cllollrah" 0<r<1, (5.3)
la — Lqlloe, < Cllalle;h (5.4)
IV - (a—1La)log, < Clalr+1,0h",  0<r<1, (5.5)

where||- ||, is the H"-norm. Bounds (5.2) and (5.3) are standafdprojection approximation
results [9]; bounds (5.4) and (5.5) can be found in [7, 18] for affine elements and [20, 21] for
guadrilaterals.

We will also make use of the following continuity bound idr

Lemma 5.1 For all elementst and for allq € (H'(E))%™, there exists a constant inde-
pendent of such that
a1,z < Cllalle.

Proof. Let us first consider the case of simplicial grids in two and three dimensions. It is
well known [17] that for allE € 7,

1l 1 giv.zs) < Cllall.

The definition of V;, on simplices gives that on eadh, we haveV - IIq = _1 9(lq);

dim Oxz;
i1 =1,...,dim, which, combined with the above formula, implies the assertion of the lemma.
In the case of quadrilateral grids, it follows from the definition of the bilinear mapping

that for allx € £ ands = 0, 1

IDFg(R)|, o 5 < Ch, TR, o p < CP?, <Ch™', (56)

s,00,F

1
— DF
Jg  F

s,00,F

Fp'ly o SChTY 1Tt < Ch™? (5.7)

The rest of the proof is based on the inverse inequality which is not a trivial result for a general
guadrilateral. For the sake of completeness, we prove it below. The definition (3.8) implies

2
e [l (o)
E E

a:L’i JE
Thus, using (5.6) and (5.7), we get

Jq

2
Jp|dx.
aﬂ}i ’ E‘ x

1
|q|17E S C (HDFE
JE

-1 1/2 |4
Nl o g l1E /ﬁ!qll,ﬁ

oo, B o
12 |1 . . (5.8)
+ |||/ . |=—DFg F =lalls 2
H ”OO,E JE‘ 17007E'| E ‘17OO,E” HO,E
< ChYall, 4
Similarly, we get the estimates
lallo.s < Cllallyz  and  lally g < Cllallo.z- (5.9)
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Combining (5.8) and (5.9) and using the standard inverse inequality on the reference element
E, we get
lali.e <ChMall, 5 < Ch7Yally g < Ch~Mlalloe-

Using the inverse inequality, we have
a1,z = Tlg — qol1,5 < Ch™'||Ilq — qoljo,e
< Ch~!(|lq - dllo.z + lla— qollo.z)

whereqq is a constant vector. Lefy be theL?(E) projection ofq onto the space of constant
vectors. The approximation properties (5.3) and (5.4) result in the estimate

M.z < Cllq

1L,E-

The bound|Ilq||o,z < C||ql1, follows from the approximation property (5.4). This proves
the assertion of the lemma. O

Throughout the paper we will be using the nonstandard trace theorem [11, Theorem
1.5.2.1]

HthFi,g‘ < CHqu—i-l/Q,Qi-
We will also make use of the trace inequality

v -nillogo, < Ch Y3|v|oga, YveVi, (5.10)

which follows from a simple scaling argument.
Let

n

Vo= {V eVy: Z(V\QL ‘n;,ur, =0 Vype Ah}
=1

be the space of weakly continuous velocities, with respect to the mortar space. Then the

mimetic finite difference method (4.4)—(4.6) can be rewritten in the following way. Find
uy, € Vy, o andp;, € W, such that

n

(K", v)n =Y (pn, V- V)g, — {9,V - n)aq, (5.11)
=1

D (Vo up,w)g, = (bw), (5.12)

i=1
for v € V¢ andw € W,,. It was shown in [1] that there exists a projection operalponto
V.0 such that, for any € (H(Q2))%™,

(V-(IIpq — q),w)o =0, we W,

Moreover, if there exists a constafit independent ok, such that

”MHO,Fz‘,j < C(HRh,iMHO,Fi,j + HRhJMHO,Fi,j)? V€ Ap, 1<i<j<mn, (513)
thenIl satisfies the approximation properties
n
Moq — Mallo < C Y llallrijp0h ™ 0<r<1, (5.14)
=1
and
n
IToq —allo < €Y llalli,h. (5.15)

=1
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5.1 Optimal convergence

In this section we prove optimal error estimates for the mortar MFD method. The analysis is
the same for both scalar products (2.3) and (2.4).
Subtracting (5.11)—(5.12) from (3.3)—(3.4) gives the error equations
(K1 Iu—uy),v), = Z ((p—pn, V-v)a, — (p,v-m)r,)
=1
+ (K~ 1(IIu — u),v) — o(K I, v), (5.16)
> (V- (u—uap),w)g, =0, (5.17)
=1
for v e V;, g andw € W}, where

U(qa V) = (q7 V) - (q7 V)h'

It was shown in [5] that(q, v);, = 0 for anyv € V},, any constant vectaq and the scalar
product (2.4). A similar result has been shown in [6] for the scalar product (2.3). Thus, letting
qo be the mean value @f on E, we get

lo(q,v)e| = |o(a—qo, v)e| < Chld|iel|Vlee, E € Th.

Therefore,

|o(K ™' T, v)| < C > h|E™!
E€T,

100, [Tl 1, B[ V|0,

(5.18)

n
<O MK M eonulielviloe..
i=1

using Lemma 5.1 for the last inequality. Clearly (5.17) implies that
V-(Ilpu—u)=V-(IIu—uy) =0. (5.19)
Takingv = Ilpu — uy, in (5.16) we get
(K~ Y(gu — up), Mou — up)y

n
= ZU’MD —p, (Mou — uy) - ny)r, + (K~ H(Mu — u), Mou — uy,)
=1
+ (Kﬁl(ﬂou —u), Ilpu — up)p — U(Kﬁlﬂu, ITou — uy)

n

<> IPwp —pl

i=1
+ (K_I(Hu - u)7 HOU - llh) + (K_I(Hou — Hu), Hou — uh)h
+ |o (K ~'u, Tpu — uy,)|

§C<Zn:|!p

=1

o,r; |(Tlou — ) - myffo,r;

(5.20)

2,0, 2%/ %[ Mou — uy o,/

n
+ > IE Y1000 ull,.h Tou - uhl!o) :
=1

where we used (5.2), (5.10), (5.4), (5.14), and (5.18) for the last inequality. With (5.19)—
(5.20), (4.9), (5.5), and (5.15) we have shown the following theorem.
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ro=r]

Figure 3:h2-uniform quadrilateral grid.

Theorem 5.1 Let K~ € W1>(Q;), 1 < i < n, and let(4.7) hold. Then, for the velocity
uy, of the mortar mimetic finite difference meth@d4)—(4.6) there exists a positive constant
C independent ok such that

IV-(a—up)o < CY_ |lullz0:h.

i=1

Moreover, if (5.13)holds, then

n
lu—wpllo < Y (IIpllzg, + l[ullLe)h.
=1

5.2 Superconvergence

In this section, we show that in the casem3tuniform quadrilateral grids, the velocity con-
verges with an order higher thai(h) in a discretel.?-norm. It is pertinent to note that the
superconvergence result is proved only for the scalar product (2.3).

Referring to Figure 3, a quadrilateral partition is calleduniform if each element is an
h2-parallelogram, i.e.]|(r — r1) — (r3 — ry)|| < Ch?, and any two adjacent quadrilaterals
form anh?-parallelogram, i.e{(r2 — r1) — (rh — r})|| < Ch2.

To establish the superconvergence, we modify the last inequality in (5.20). In particular,
(5.2) gives

n n
> 1Pwp = pllor: [ (Mou — wn) - myllor, < C D [Iplls 2.0, Tou — w0/,
=1 =1

and (5.14) gives

n
(K~ (Ilgu — ITu), Hou — uy,), < CZ ||UH3/2,Qih3/2||H0u —uplo.
i1

In addition, Theorem 5.1 in [10] implies

(K~ '(Tu —u),Mou —u,) <C Y _||K!

=1

2,00, [0ll2,0, 2% TTou — wy,lo,
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and Lemma 4.3 in [6] gives

n
o (KT, o — u)[ < C Y (1K l2,00.0; 12,0, 2% TTou — uplo.
=1

Combining the above four bounds, we arrive at the following superconvergence result.

Theorem 5.2 Let K1 € W2>(Q;), 1 < i < n, and let(5.13)hold. Then, for the velocity
uy, of the mortar mimetic finite difference meth@d4)—(4.6)with the scalar produc(2.3)on
h2-uniform quadrilateral grids, there exists a positive constarindependent ok such that

ITTu = wpllo < C Y (IIplls/2.0, + ull20)h™?.

=1

‘2791')

The above result can be applied to obtain superconvergence for the computed velocity to

the average edge fluxes. Define, for ang (H'(;))%,i=1,...,n,
4 2
HIvIIZ = VIl |||V||2E=Z(/ V-nde) : (5.21)
EeT, k=1 V¢

Itis easy to see [6] thdf| - ||| is @ norm onV, and there exist constantsandcs independent
of h such that

alvioa < IVl < calvine ¥ e Vi (5.22)

Moreover, |||Ilv — v||| = 0 for anyv € (H'(Q;))?, i = 1,...,n. We have the following
superconvergence result.

Theorem 5.3 Under the assumptions of Theorem 5.2, there exists a positive consiaté-
pendent of such that

lla—unll| < C (IIplls /2.0, + ull20,)h*.
i=1
Proof.By the triangle inequality and (5.22),

[[a = ||| < [[[TTu = up[|] < cof[TTu —wy o,

and the assertion of the theorem follows from Theorem 5.2. O

6 Pressure error estimates

In this section we employ a duality argument to obtain a superconvergence estiniaie for

pr. The estimate is proved for both scalar products (2.3) and (2.4) on triangular, tetrahedral
and h2-uniform quadrilateral meshes. The general quadrilateral meshes require the scalar
product (2.4).
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Lemma 6.1 Let K~ € W2(€),), 1 < i < n, and the scalar product be given Kg.3).
Then, for allv,q € V,, there exists a positive constafitindependent ok such that

lo(K™'v,q)| <C > W
EeTy,

wherer = 2 on simplicial elements ank-parallelograms, and = 1 on general quadrilat-
eral grids. If the scalar product is given [§g.4), thenr = 2 for both simplicial elements and
general quadrilaterals.

Proof.For an elemenkE ¢ 7, we define the error
rp(K Vi) = [ K- qdx— (K. (6.1)
E

First, we consider the scalar prodydt ~'v, q), z given by (2.3). It was shown in [5]
thato g (vo, q) = 0 for all constant vectors . Using this result and symmetry of (6.1), we get

op(K™'v,q) = op(K'v,q—qo) +op(K~' — K; 1) (v — vo),q0)

_ (6.2)
+ o5(K 'vo,qo)

wherevy, qg are constant vectors arid, is a constant tensor. By a constant vector (tensor)
we mean a vector (tensor) with constant componentsvg.andqy be theL?(E) orthogonal
projections ofv andq, respectively, onto the space of constant vectors?{[)éﬁ = K Y(mg),
wherem is the center of gravity of?, and let(K ~'v), be theL?(E) projection of K ~'v

into the space of constant vectors. Using the Taylor’'s theorem, it is easy to verify that

1K™ = Kq Hloo,p < CRIK 1,00,
Using (2.5) and (5.3),

lop(K'v,q—qo)| = lop(K~'v — (K™ 'V)o,q—qq)| < Ch?| K~

The second term in (6.2) is estimated as follows:

lop((K™' = Ky (v —vo),q0)| < C| K™ = Kiloo,zllv = vollo,zllqollo,z

6.3
< on? (6.3)

The remaining term in (6.2) is estimated as follows:
/ K71V0 “qo dx = K_]'VQ . q0|E|,
E
whereK —! is the mean value ok —! on E, and

(K~'vo,qo) hE = — ZIT\K (rj)vo -

wherear = 2 for quadrilateralsqy = 3 for triangles,ap = 4 for tetrahedra, and is the
number of vertices of elemer. For simplicial element§;| = |E| and it is easy to check
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that the above quadrature is exact for linear tensors. An application of the Bramble-Hilbert
lemma gives

lop(K™'vo,qo)| < CR*|K ™ vola,pllqollo,z < Ch? K™

2.00,E[Vollo,zllaollo,z- (6.4)
For general quadrilaterals, the quadrature is exact for constant tensors and we have

lop(K™'vo,qo)| = |op((K~" = Ky ")vo,q0)| < Chl| K™

1,00,.2]|Vollo,zl|qollo, 2

Let us show that this term i9(h?) in the case oh?-parallelograms. To do this we map it to
the reference element. It follows from (3.5) th&i(r;) = 2|7j|. Thus,

4 4
_ 1 _ 1 5 1a
(K~vo, do)ne = 5 D ITHE  (x))vo - a0 = 2 D ITIE T (#))vo - ao

o = (6.5)

1 .
= Z ZBE(I'])VO qo = (BEV07q0)T7
j=1

where By = JgK~!. Note that the quadrature rule -)r is the trapezoidal rule on the
reference squarg.
For the integral term in the quadrature error we write

/K_1V0-q0 dX:[R_1V0~ q()JE d)A(:/lBEVO-qO dx. (66)
E E E

Using (6.5) and (6.6) we obtain
op(K 'vo,qo) = / Bgvo - qo dX — (Bgvo,qo0)r = 05 (BEgVvo, do). (6.7)
E

Since the trapezoidal quadrature rulefois exact for linear polynomials, the Bramble-Hilbert
lemma implies that

lo5(Bvo,qo)| < C|Bl,y o, zlvollg zllaolly 2 (6.8)
To bound on B|, _ 5, we note that for an?-parallelogram

el oy S OB, JBlyso s =0, |FEl o p <Ch°, s =1,2.

s,00,F

Therefore,

By < C (WK, o+ WK, ) < CHYIKT!

‘Q,OO,Ev

using the chain rule for the last inequality. The above bound, combined with (6.7) and (6.8),
implies

loB(K Vo, q0)| < ChY|IE ™ 200,]v0llg pllaolly, 5
< Ch?|| K™Y |2.00,BllV

lo,2llallo,z,

Let the scalar produdts —'v, q), g be given by (2.4). The only thing we have to do is
to derive an estimate for the third term in (6.2). Note that the scalar product

_ 1< _ _
(K 1V0’q‘0)h’E:?EZ’CI}‘KEIVO'(]O: ’E’ KE1V0.qO
j=1
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is exact for linear tensors for both simplicial and quadrilateral elements. The application of
the Bramble-Hilbert lemma gives estimate (6.4).
The assertion of the lemma follows from thélder inequality. O

We continue with the duality argument for boundih@,p — px|lo. We first rewrite the
error equation (5.16) as follows:

n

(K (u—wy),v) = Z ((p—pn, V- V), — (0, v m)r,) — o(K 'up, v) (6.9)
i=1

Let ¢ be the solution of

~V - KV¢ = —(Qnp — pn) in 2,
p=20 on of.
By elliptic regularity,
lell2 < C[IQnp — pallo- (6.10)
Takev = Il KV in (6.9) to get

n

19np = prlld =D (Qrp — pr, V - K Vp)g,
=1

=> (K™Y (u—up),IKV)a, + (p — Pap, LK Ve - ni)r, )
=1

+ o (K tuy, i K V). (6.11)

The first two terms on the right in (6.11) appear also in the proof of Theorem 5.1 in [1], where
it was shown that

n

> (K Hu—w,), K V), + (p— Pup, K Ve - ni)r,)
=1

n
< C'Zh2HK||1,OO,Qi(HpH27Qi + Hu
=1
Using Lemma 6.1, the last term in (6.11) can be bounded as
lo(K~'uy, g K V)|
<C D Wluplh MoK Vel e

l2.0,)[l#ll2,0:- (6.12)

Ec€T,,
<C > B (|up —uly g+ |Tuly,g)
EcT;,
x (MoK Ve — MKVy|1.x + |[TKV|1.5) (6.13)
<C Z R (W up — ullo.e + [[ulli,e)
EcT;,

x (WY IIp KV — IIK V|

0.6+ [|1KVel1p)

n
<CY WK1 o0 llp
=1

where we used the inverse inequality and Lemma 5.1 in the third inequality, and Theorem 5.1
and (5.14) in the last inequality. A combination of (6.10)—(6.13) gives the following result.

2.0, T [allre)l#ll20:
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Theorem 6.1 Let K € Wh>(Q;) and K—! € W2*>(€;), 1 < i < n, and the scalar
product be given by2.3). Then, for the pressurg, of the mortar mimetic finite difference
method(4.4)—(4.6) if (5.13)holds, then

n
1940 = pillo < €S (Ipllz, + [ullz,)A",
=1

n
lp = pullo < Y _(lIpllz, + l[ullz0,)h,
i=1

wherer = 2 on meshes with both simplicial elements @idparallelograms, and- = 1 on
general quadrilateral grids. If the scalar product is given(2y4), thenr = 2 on meshes with
both simplicial elements and general quadrilaterals.

7 Numerical experiments

In this section we confirm the theoretical estimates for a special case of non-matching meshes,
the locally refined meshes. An example of a computational mesh is shown in Fig. 4. The
mesh consists of 13 quadrilateral subdomains with different levels of uniform refinement.
The convergence of the mortar MFD method has been studied on the sequence of meshes
generated by uniform refinement (and coarsening) of the shown mesh.

Another sequence of meshes is generated from the above sequence by perturbing the po-
sitions of mesh nodes. The mesh node is moved to a random position inside a square centered
at the node. The side of the square are aligned with the coordinate axes and equal to 40% of
the size of the smallest edge sharing the node. The mesh nodes on the domain boundary and
subdomain interfaces are not perturbed. An example of a random mesh is shown in Fig. 5.

h
= {llp-p I
105} ] = =l
= llu-u"||

h
= lllu-u"|l

Figure 4: Convergence rates on a smooth mesh

The interface conditions for the mortar MFD method are drastically simplified in the case
of locally refined meshes. Let us consider the interface Let&),; ; be the finer partition,
Enij = En,j; and the mortar spack, ; ; be discontinuous.

In order to describe projecto®; ; and R;;, it is sufficient to consider a three-cell in-
terface. Let cellst; and E» from 75, ; be adjacent to a celts from 7;, ;. Without loss of
generality, we assume théi ; ; = {f1, fo} and&, ;; = {f3}. Then, the dimension of the
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- [ilp-p"Il
1051 == e -p"lIl,
o [llu-u"|
= (lu-u"y,

10 10

Figure 5. Convergence rates on a random mesh

mortar space is 2R; ; is a2 x 2 matrix, andR;; is al x 2 matrix. Itis easy to check that
definition (4.1) results in

1 | f1] | fa| + | f3] 1
Rii= 7 and Rj;=-[1 1].
R VARV 2

Eliminating vector) from (2.13), we get the following continuity conditions:

\filps + | falpg, = | f3lpy, @nd up = up, = —uy,.

Similar condition has been proposed and analyzed numerically in [13]. It has been shown that
the resulting MFD method is exact for linear solutions.
Letp(x, y) = x3y? + z cos(xy) sin(z) be the exact solution anl be the full tensor,

x 2 42 —x
e v = <( +—1ify+ ’ (z + gﬂ) ‘

The right pictures in Fig. 4 and 5 show the convergence rates for the pressure and velocity. In
addition to norm (5.21), we show the convergence rate in the disErgtaorm:

Iha = o = max

)

1/ d
— u-nrds —up-n
T !

where maximum is taken over all mesh edges. The convergence rates for the pressure variable
are shown in the following discrete norms:

h
llp — p"(|]*> = Z Ip(ci) — palci)]? el
e; €7y,
and
llp — Pl = max [p(ci) — pu(ei)l;

wherec; is the geometric center of element The use of the geometric center instead of the
mass center is due to the following property of the mortar MFD method. The method is exact
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for linear solutions when the pressure variablg; ), is evaluated at the geometric center
[5].

The mortar MFD method with the scalar product (2.3) has been used on the smooth
meshes. The convergence rate for the velocity variable is 1.6. This is slightly higher than
the theoretically predicted rate of 1.5 (see Theorem 5.2). The second order convergence rate
for the pressure variable confirms the assertion of Theorem 6.1.

The mortar MFD method with the scalar product (2.4) has been used on the random
meshes. The asymptotically optimal convergence rate for the velocity is in agreement with
the assertion of Theorem 5.1. The second order convergence rate for the pressure variable was
theoretically predicted in Theorem 6.1.
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